Edge detections of MER Signals of STN with DBS micro electrode local field potential acquisitions in Parkinson`s

Authors : Venkateshwarla Rama Raju, Venkateshwarla Rama Raju

DOI : 10.18231/j.ijn.2021.051

Volume : 7

Issue : 4

Year : 2021

Page No : 281-286

Deep brain stimulation of the subthalamic nucleus (STN) is a highly effective treatment for motor symptoms of Parkinson’s disease. Sub thalamic nucleus deep brain stimulation (STN-DBS) is a therapeutic surgical procedure for reducing the symptoms Parkinson’s and restoring and increasing the motor functioning. However, precise intraoperative edge or perimeter detection of STN remains a procedural challenge. In this study, we present the micro electrode signals recordings (MER) of STNs and local field potentials (LFPs) were acquired from deep brain stimulation macro electrodes during trajectory towards STN, in Parkinson patients. The frequency versus intensity atlas of field potential activity was obtained and further than investigated in distinct sub band’s, to explore whether field potentials activity can be employed for STN edge detection. STN perimeter detections by means of L F Ps were evaluated to edge predictions by way of the functional stereotactic DBS neurosurgeon, based on micro electrode derived, single unit recordings (M E R – S N A of S T Ns). The findings show variation amongst M E R – S N A and macro electrode L F P-signals gathering through MER-system pertaining to the d o r s a l S T N b o r d e r of -1.00±0.85mm plus -0.42±1.08 mm in the and frequencies, correspondingly. For these sub band`s, root mean square of the voids was found to be 1.27milli meters and 1.07milli meters. The Assessment of other sub band`s didn`t set a limit for differentiating the posterior (c a u d a l) point of sub-thalamic nuclei. We may infer that In conclusion, macro electrode signal acquisitions of STNs derived L F P gatherings might offer an unconventional methodology in the direction of m e r – s n a, for detecting the aimed target subthalamic nucleus borders during DBS-surgery.
 

Keywords: Deep brain stimulation, microelectrode recording, macro recording, macrostimulation, Parkinson`s disease, Subthalamic Nucleus


Citation Data